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Abstract 

The theory is Cevelqed describing transitionsinduced by electron impact 

F u l l  account i s  taken of exchange and the cnmmted cross sections 
between all the ground s t a t e  terms or' a t a s  and ions w i t h  configurations (2p)' 
and (3p)q. 
s a t i s f y  exactly the required uni ta r i ty  bounds. 
of the method used f o r  the solution af' the resultant coupled integro differential  
equations. 

A description i s  then given 

dz.-424- 

k 

Microfiche ( M  F) f 6 . 5  ! 

0 Work performed while a msident  research associate of the  National Academy of 
Sciences-National Rese&h Counoil. 



. I. +Introduction , 
The interpretation of astmnornical observations is- helped considerably by 

a knmledge of the atomic processes which can take place i n  the constituent 

elements of astronomical objects. In particular,  by studying the observed 

spectrum one gets some idea of t h e i r  chemical amposition, density and temperature. 

hany spectral  lines observed i n  gaseous nebulae, i n  auroras, and i n  the night 

airglow are due to transit ions, .  among the terns of atomic systems, which involve 

no change i n  the electmn configuration of the system. 

of par i ty ,  these t ransi t ions are forbidden f o r  e lec t r ic  dipole radiation but a r e  

allowed f o r  e l ec t r i c  quadrupole and magnetic dipole radiations. 

Due to the conservation 

The t ransi t ion 

probabi l i t ies  are of the arder (1 to  10-5)sec-1, campared with 10 0 sec -1 f o r  

permitted dipole lines. The strongest l ines  i n  the spectra of most nebulae are 
1 I 

due t o  the D2-?P2 and D2-%l magnetic dipole transit ions i n  O'", which has the  
~ 

2 2 configuration ( I s )  (2s) i n  both the i n i t i a l  and f i n a l  states''). Indeed 

there is considerable astrophysical interest  i n  a l l  the forbidden l i nes  arising 

from transit ions between the three spectral. terms of cd igu ra t ions '  2pq and 3pq, 

q=2,3,4 i n  a large number of atoms and ions. 

electron impact. 

These lines can be excited by 
* .  

Consequently, i t  is of i n t e re s t  t o  predict theoretically the 

excitation cross sections f o r  electrons incident on atomic systems w i t h  configurations 

(2Sl2 (a)? and (2s)2 (2d6  (3s)2 (3p>? 

There is additional astrophysical in te res t  i n  these transit ions f o r  a t  l ea s t  

two reasons. 

density dis t r ibut ion and the electron temperatures i n  the E and 3 regions of the 

F i rs t ly ,  they play an important role i n  determining the electmn 

upper atmosphere. Secondly, it has been pointed out by Bransccvnb and Page4 (2) 

t ha t  the absorption of photons by atomic and molecular negative ions, especially 

C- and possibly d, may be of considerable importance i n  understanding the physical 

properties of stellar photospheres. In order t o  compute the bound-free and he- f ree  

absorption coefficients it is necessary t o  know the rad ia l  function describing the 

motion of the electron, freed by 

This is precisely the scattering 

photo-detachment,relative to  the parent atom. 



. 

8arly calculations of the electron induced transitions i n  these atoms were 

shown by Bates et 

Seaton i n  a ser ies  of papers(4) developed the theory of the ccntinuum Hartme-Fock 

equations and applied it t o  a variety of atoms and ions. 

complexity both of the algebra and of the  numerical evaluation of' the result ing 

t o  exceed the conservation condition by a large factor. 

However, wing t o  the 

equatiolls only a few calculations of limited accuracy have been carried out. 

Recently,the theory has been extended by Seaton and appaied by Shemming(5) to 

calculations of transit ions i n  0'". Both the methods of distorted waves 

exact resonance. were used in tine solution of the resultant coupled integro- 

d i f fe ren t ia l  eqyations. 

order integro-differential equation describing the elastic scattering on the 

ground s t a t e  of C- have been reported by Myerscough and LlcDowell(6) and on O+ 

Recently, also,  some exact solutions of a single second 

by Dalgarno, Henry and Stewart (7) . 
I n  t h i s  paper the theory of scattering of electrons by atomic systems w i t h  

configurations 2pq and 3s' , where q=O to 6 ,  is  developed. Particular emphasis 

i s  given t o  developing the f o m i s m  i n  a way which takes fill advantage of the 

power of high speed d ig i t a l  computers t o  aid i n  the algebraic analysis as well 

i n  solving the resul tant  equations. It is  found that ir a proper treatment of 

exchange is adopted, then the post-prior discrepancy which tmubled early woscers 

i n  this f i e l d  does not arise. Further, i f  only the terms i n  the gmund state . 

configuration af the atom or ion are coupled then the msultant integr-differential 

equation can be easily solved without further approximation using fast computers. 

There is very l i t t l e  point i n  attempting to simplify the equations to  use approximate 

solutions thus introducing fur ther  unnecessary errors and ambiguities. 

It is  convenient to  discuss here i n  general tern the expected accuracy and 

thus just i f icat ion of our approach fo r  these transitions. 

that  the close coupling expansion can give resu l t s  of dubious accuracy f o r  excitation. 

Thus,in calculating the I a-2s o r  I s-2g excitation by electronimpact i n  atomic 

hydrogen the 1s-2s-2p close caapling approximation gives results much la rger  than 

experiment (Burke and Smith(8)). 

It i s  by now well known 

It is not sufficient to include just a few f'urther 



c 

- excited s t a t e s  in the expansion but the whole series must be rearranged t o  obtain 

f a s t e r  convergence. 

hydrogen the approximation obtained by retaining only the I s  s t a t e  i n  the 

However, fo r  e las t ic  scattering on the ground I s  s t a t e  of 

' 

. expansion gives, when exchange is  included correctly, ten per  cent accuracy. 

This i s  basically because the 1 s state i s  well separated i n  energy from neighbowing 

s t a t e s  and is thus weakly coupled. 

and (3p)Q the ground state terms are a l s o  w e l l  isolated 

9 
I n  atoms and ions with configurations (%) 

weakly coupled to 

other levels. 

e l a s t i c  scattering i n  hydrogen than t o  excitation. 

The t ransi t ions anion@ these terns, is thus more analogous to 

Thus, provided all the direct  

and exchange interactions between the terns are included cwrectly,  as i n  this 

paper, then the resu l t  can be expected to  be of f a i r l y  high accuracy. 

I n  Sec. (11), the form of the t r i a l  function t o  be substituted into a 

variational principle is discussed. 

derivation of the continuum (i.e. scattering) Hartree-Fock equations is presented 

i n  Secs. (111) and (N). 

The use of the principle i t s e l f  and the 

I n  the f i n a l  section, (V) w e  report i n  de t a i l  the 

numerical methods we have developed to solve the coupled systems af integro- 

d i f fe ren t ia l  equations. 



It w$u be assumed throughout this paper that t h e  Hamiltonian is spin- 
S a n d  L r e s p e c t i v e l y ,  

independent; consequently, both t o t a l  spin and orbi ta l  quantum nymbers/are 

conserved. I n  order to  take adventace of t h i s  Tact we sha l l  work in  a 

representation which is diagonal i n  both L and S. 

approximate solutions can be given t o  the problems of col l is ion theory; Seaton 

has sham tha t  the only consistent means of  obtaining anti-symmetric wave functions 

i n  approximate solutions is to  make the expansion expl ic i t ly  antisylnetric. 

It i s  w e l l  k n m  that only 

4 

Consider the co l l i s ion  of' an  electron with an atomic system with nuclear 

charge Z and having N electrons, l e t  the to t a l ly  antisymmetric (N+l )  e lec tmn 

wave function be 

where zi denotes the spa t i a l  and spin coonkinates of the i t h  elec.tron and rj =yj 
k. l.L 

the atomic system i n  the s t a t e  j. The atomic term is labelled L.S the wave 

number and the orbi ta l  angular momentum of the project i le  are  k . and 1 

This ( N + l )  e lectmn wave function can be expanded i n  terms of basis f'unctions w h i c h  

~ 

S LS$, % is the complete set of quantum numbers required t o  specify 

J J' 
respectively. 

J j ' 

are completely antisymmetric under interchange of the coordinates of a pa i r  of 

target electrons 

N+I 

*..(l) 

where Zwi denotes a l l  the coordinates of the ( N + l )  electrons except those of the 

i th .  and F. .(r) i s  the f'unction which describes the r ad ia l  motion of the impinging 

electron i n  the channel l'. when the system was i n i t i a l l y  i n  the s t a t e  I' The 

summation over 2 i n  (1) i s  restr ic ted i n  practic e t o  go over the terns belonging 

t o  the ground s t a t e  configuration of the target. 

functions F. (rj satisf'y cappled systems of secod order ordinary integm-differential  

13 

1 j' 

i 
It w i l l  be shown below tha t  the 

.j 
equations w i t h  the boundary conditions, 

-4= 



r ->O 

where ei = kir - li."/2 - tli log 2ki r + Q 

li 
and .'li = - (2 - N) / ki* 

uli = Wg r(i i  + I + mi) 
The radial functions F. .(r) a,re continuum Hartree-Fock orbi ta ls ;  f m m  t h e  

1 J  

properties of the surface harmonicsF. .(dwill be automatically orthogonal t o  

atomic discrete o rb i t a l s  with orbital quantum number l,, * lie For closed 

subshells, it follows fraa fhe antisymmetry of Eq. (I) w i t h  respect to the 

interchange of any two IS the electrons that there is no a p p r o h a t i o n  i n  

1J 

choosing F orthogonal to  P even though \ might equal lie This may be 
nhlx ij 

modif'ied s l igh t ly  if we choose approximate Hartree-Fock orbi ta ls  fo r  the t a r g e t  

r a the r  than exact H-F orbitals; however, i n  any case the overlap can be expected to 

be very small .  Far incomplete subshells, w i t h  lA = 1. we can expect 

the overlap integral  (Fij,P) * 0. To take th i s  e f fec t  into account, since it is 

equivalent t o  the virtual capturn of the impinging electron, we have imposed the 

condition that Fij are orthogonal t o  discrete  ofb i ta l s  and added to Eq. (1) 

an arbi t rary amount of a wave fhnction, Yo, correspording to  a configuration with 

one additional e lec tmn i n  the incomplete subshell. 

Y 
1 

Thus, the trial wave function 

. . b (4) 

-5- 



. Equation (4) can be interpreted as o statement of configuration interaction &e= 

the first term represents an atomic system with one electron i n  a continuum 

orbital,wlSein the second 

' C are determined from j 

It is assumed that the 

I S  for carbon) but only on the coxfiguration and 2. This 

tenn ell electrons are i n  d i scre te  

the variational principle given i n  

orb i ta l s  Pnl(r) do not depend upon 

orbitals. The coefficients 

the next section . 
the tenn (e.& 'P, D, 

assumption is v i t a l  

I 

to our derivation and w i l l  be seen to greatly simplify the analysis. 

i n m d  by t h i s  approximation can be expected t o  be small . 
The er ror  



* . 3. Variational Principle 

For the aspIptOtiC ImrmaliZatiOn chosen i n  Eq. (2), it  can be 

shmn, see Burke and Smith"), tha t  

6(L -&2) = 0 

provides the basis for a variat ional  principle since the quantity (L-f l2)  is 

stationary with respect t o  variations 

6Fij (r) - k$ 6/izlj cos ei . . . ( 6 )  

and arbi t r tuy SC', where 

with the Hamiltonian of the full system being 

N+I N+1 

. . . ( 8 )  

We xill adqt atomic Tunits with* = e = m = 1 t h u g h o u t .  

Upon replacing the  f'irst term of Eq.(4) by the expression given i n  ( I )  

and substi tuting the resu l t  for the  first Yt i n  Eq. ('7) we obtain 

-7- 



* . having used the f a c t  a t  

interchange of all the coordinates of any pai r  of electrons. 

the notation 

is symmetric and Y t  is antisymmetric unler the 

We have intmduced 

N+I r 

Now subst i tute  the fa1 form for Y t  i n  Eq. ( 9 )  and note that the term i=N+l 

is d i s t inc t  from the other N terms to  &ve 

I n  order to carry out the xeduction of the s i x  terne appearing i n  Eq. ( 1 1 )  

we consider sepwately, the direct term 

the exchange term 

...(12) 

terms linear i n  .the arbi t rary constants C 

-a 



. and finally terms quadratic i n  C 

(15) 

To evaluate the matrix element given i n  Eq. (12), the functions Yk and , 

Y1 are replaced by ( I O )  w i t h  the composite function of target a d  spin-angle 

parts at' the project i le  wave function being expanded out using Clebsch-Gordan 

coefficients and Hartree-Fock wave functions f o r  the target ?hi& a r e  assumed to 

sat isfy 

. (16) 
I n  other words, Ym are so chosen that  €$ is diagonal i n  that representation, 

where the N electron Hamiltonian is defined i n  terms Or the N+1 Hamiltonian by 

Using (IO), (16) and (17) i n  (12) we obtain 

00 

Lik, D j l  = *+I Fik (rIW li(li+l ) + 22 + lci) 6ij 
0 N+1 rN+l = 

n 

, 

. (18) 

-9- 



' where k 2 = 2 (E'EN (Li Si)) 
i 

is i n  Rydbergs if E a d  % are i n  u n i t s  of 27.2097 eV, and where 

9 This expression f o r  V 

reduce t o  

(r) has been &awn by Bely, Tully and Regemorter to  i j  

V. .(r) = ?(&+I ) yo (pn' P ~ # ~ #  ; r) 
6iJ n 1 = closed 1J 

subshells 

3q [ (21i+i ) (2Li+l ) (21 j+l ) (2L j+l ) 14 c (2A+I )-I 
A + % s i j  

L+Li +L +L x (1 1 00 1 ho) (I 1 001 l o )  W(liLi lj Lj; L A) c (-1) 3 2  
L292 

i j  

xiq L ~ s ~ / I  L2s2j (q L s I ] L ~ s ~ )  3i( j S  

where n i s  the principal q ~ ~ a n t u m  number of the outermost i n c q l e t e  p subshell, 

(ab oo{co) is a Clebsch-Gordan coefficient, W(abcd; ef) a Racah coefficient, both 

i n  the phase convention d' Rlatt, Biedenhmand Roseio a d  (q Lisi 1 1  L2 S2) 

i s  the coefficient of fractional parentage. 

I n  the evaluation of the exchange tern, Eq. ( I j ) ,  w e  note that the matrix 

element ("> w i l l  include and overlap in tegra l  

0 (20) 

-1 0- 



’ which, as discussed in Sec. (XI), we are going t o  set equal to zero, The natrix 

elemcnt of the single electmn Hamiltonian, HI (xx+,), w i l l  contain a similar 

factar to (20). Consequently, (13) simply becorns 

since those terms i n  za with a * N will a l l  have overlap integrals l ike those 

of‘ (20). 

Racah (I2) and we obtain 

Equation (21) was evaluated using the methods of Hartme‘”) and 

%(Pnal’ Fik Fjl P n a l e )  (2l’+1) (211 + I)-’ 
=-%J c n l  

= closed 
subshells 

1 

x ( 1’ hoo I li0l2 - 3q C(21i+l )(2Li+l)(2Si+l )(2lj+I)(2L J :+l)(2Sj+l)]a 

x r, ( q  Li Silj L* s2) ( S i j  sj j ] i *  s2) Ns. 3 g s . i  ss2: 
J 1 

L2s2 

1 L  

0 5 (’rrp F. ~k F jl P np ), h 

Li li L 

0 .  . ( 22) 
where R a m  the Slater integrals, and i s  the Wigner 9j coefficient. 

h 

-1 1- 



I n  the evaluation of the terms liwar i n  C ,  both the matrix elements d 

and E contain overlap factars as i n  (20)  and the secord t e rn  i n  (14) becomes 

= C k C 
i Vi Fil dr, 

where 

= closed 
subshells 

I 

x [f(21i+ 1)(2L'+1)(2Li+1)]52 (-1)L2+L +L'+Li (q L'S' I ]  L2 S2) 
u2s2 

x (q Lisi 11 L2S*) !u+l)-l (1100) k 0 )  (11. 00 IX 0) NIL' li Li; Lh) 
1 

It is  emphasized tha t  the terns involving C w i l l  only appear if electmns are 

scattered from target  systems with incomplete outer p-subshells. 

Finally we come to the evaluation af Eq. (15) which does not contain the 

r ad ia l  functions F ! Consequently, the matrix element w i l l  be simply a number 

-1 2- 



where the la s t  matrix element i s  

subshella 

x (1100( (2h+I)-l W(1L' 1 L"; LA) w(1 L* 1Ln ; L A )  

4 L* + L " + L + L  x % (pnp ; d (-1) 

Defining Dij by 

.. b (26) 

Dij = - $(--2 d2 - li(li+') + + 
bij + Vij + wij, r 2 r 

i s  an integral operator given by (22),  
where 'ij 
Eq. (5) can be written as 

(27) 

-1 3- 



. . (28a) + C  1 C J & V j F j k  + C  k 1  C (%+,-E)-g]  = O ,  
j 2 .  

Since we i n t e d  t o  impose the orthogonality af the continuum function to  all 

the discrete o rb i t a l s ,  then extra t e r n  

= k, 1 f o r  all i 0 b 0 ( 28b) 

where p are the L-ange undetermined multipliers,. must be &&led to dq. (28a). 
i 



4. R a d i a l  Equations 

Variation of (28) w i t h  respect to  Fa gives 

' Using Green's theorem, the second term i n  (29) can be rewritten and the result 

is 

For arbitrary variations 6F, subject to Eq. ( 6 ) ,  then 

are the system d integro-differential eqyations 

Variation of (28) with respect to  C m yields 
for the radial functions F . 

jl 



which is satisf'ied by 

c1 = - - E>-' c 1 vi (r) F (r) .  
i il 

Substituting equation (33) i n to  (31) gives 

. - _ ~ _  
These coupled integro-differential e q a t i o n s  are solved by t h e  raethods described 

i n  the next section t o  yield the radial functions F (r). The Lagrangian 

multiplier's pm are adjusted ao that the in tegra ls  (28b) are zero. 

can be simply determined from the asymptotic form cf the functions 1' 

to equation (2a). 

i n  (34) i t  follows that  the &-matrix i s  also symmetrio and thus the resultant cmss 

section satisfies the required unitarity bounds. 

defined i n  the usual way by the matrix relation 

J l  
The Rmatr ix  

jl (r) accordirg 

Frorn the expl ic i t  symmetry of the direct and exchange potentials 

The *ransition matrix T is then 

T = 2 i&/ (1- ia ...(35) 

and the cross section f o r  the t rans i t ion  Li Si 

from an analysis similar t o  t h a t  given by Lane and Thomas(13). 

-> L S. follows immediately 
J J  

It is defined by 

= C  (2S+I) @Lisi, L .  s 
J 2k2 (2 Li+l)(2Si+1) 

.I. 1' 
li 5 t 

2 in X a. units, where L, S, n are the total angular momentum, t o t a l  spin and parity 

of the system respectively an3 where li 1 are the orbital angular momenta of 
5 

-16- 



* .  
the i n i t i a l  and f i n a l  scattered electron s ta tes  respectively. 

I n  a t y p i c a l  case, for exampie the scattering of' electrons by atomic 

and '11 implies that  (316) reduces to a set  of e i t h e r  oxygen, conservation of L S 

four of f ive  coupled integro-differential equations f o r  S G  depending on whether 

L+x is  odd or' even respectively. 

-1 7- 



5. Computer Program t o  Solve E'wations 

A X I R W  program has been writ ten to  solve e q a t i o n s  (yC) for an electron 

scattered by an  atom o r  ion of arbitrary charge and with the 2p or 3p s h e l l  

p a r t i a l l y  filled. 

(a  boo 

The program uses subroutines for  the Clebsch-Gordan coefficient 

co), the Racah coefficient W ( a  b c d; e f) and the Wigner 9j coefficient I 
f 1, :) and a table ai' relevant fractional parentage coefficients (q L1 SI I jL2 S2). 
f f g  
With this infomation t h e  program carries out the summatiominvolved i n  the definitions 

at' V .  .(r), Tij and V. (r) and decides, for a par t icu lar  L S and x input values, 
1 J  1 

how many  equations i n  (34)  a r e  coupled an& what the expl ic i t  form of a l l  the 

interaction terns are. It also decides automatically on the  basis of the particular 

atom or ion being considemd and the energy af the  incident electron, what intervals 

to  use i n  the numerical integration af (s). The maining information rewired  

by the code i n  order t o  carry out the evaluation of the, cross section defined by 

( 3 6 )  is the H a r t r e e  Fock orb i ta l s  f o r  the a t o m  o r  ion. It w a s  found convenient, 

t o  read i n  the analytical orb i ta l s  defined by Roothaan and cavorkers ('4) since 

they a r e  now available f o r  most of the atoms and ions of interest .  

The numerical solution of the resultant coupled e q a t i o n s  (34) w i l l  now be 

&scribed. To en&l,le the s d u i i o n  of (Y,) t o  be obtained when some  or a l l  af the 

channels are vi r tua l  i t  w a s  necessary t o  adopt a method of inward and outward 

integration with subsequent matching to  obtain a final continuous solution. 

This  is  the method used by Smith and Burke(15). The  integral  terms i n  (34)  are 

treated non-iteratively following h r n o t t ( 1 6 )  i n  order tha t  any narrow resonant 

effects may be detennined without convergence d i f f i cu l t i e s  ( =e Burke and McVicar  (174 

Finally the asymptotic expansion mthod of Burke an3 Schey ( I 8 )  w a s  used to 

determined the & -matrix fmm 

M d2 F Ti = z A.. (r) F 
5 dr j - 1  1 J  

+ 2cvi .+ 

the functions Fi' Equation (34) can nom be writ ten 



* . where the suffix denoting the incident channel has been dropped since we require 

all possible solutions of (37) consistent with the boundary conditions (2a). 

Further the quantity C i n  (37) is j u s t  that  given i n  (33). 

,4 

According t o  Hartree'" I, the functions yA(P F; r) satisfy the f ollming, 

secord arder ordinary di f fe ren t ia l  equation 

2 d (r yx) = h (h+l) (I. Yh) - (2h+I) P(r> F(r1 
dr2 r I' 2 

with the  boundary conditions . 

(3B) 

. . . (2b) 

'Ne solve the equation (37) subject to the boundary conditions (2)  

Yie now introduce the following definitions: T h e  l e t te r  M denotes the number of 

different F ' s ,  Le. the number of channels; NE is  the total number of exchange 

terms appearing i n  &. the F-equations. Let  IiA be the number of open channels 

(Le .  those V?e introduce the parameter NV which 

i s  zero if a l l , V i  = 0, otherwise it i s  unity. 

multipliers i n  a given set of equations (37). 

2 channels f o r  which ki > 0). 

Let NMJ be the number cf Lagrange 

A t  r'=O we defiae (&NE) linearly idependent solutions of the homogeneous 

system of e q a t i o n s  i.e. 

2" = B. Z 

i s  a column vector which has (hi+m) elements. Since Z(0) = 0, then (M+h%) of 

the a rb i t ra ry  constants are f ixed and the independent solutions are generated by 

-1 9- 



E ,  

se t t ing  the coefficients af' the power;&+l o r  r"' a t  the origin unity one a t  a 

t i m e  with the others set equal to zero. These solutions are  then integrated out .. 

with C=pi = 0. 

system are generated by se t t ing  e i the r  C = 1 and a l l  the pi = 0, o r  se t t ing  one ol" 

the  pi equal to unity and the remainder, together with C,  equal t o  zero. 

way  we define NIN = M + NE + NV + NMV linearly independent solutions a t  the origin. 

T h e s e  solutions are then integrated out to SORE match point denoted r 

solutions a r e  labelled 

coefficients va, where a=l ,  ... , (hi + NE), C and p 

the range 0 < 
r = 0 t o  a mesh point h = 0.01 and then the Nmrov  msthod from h to rO. 

A fur ther  (hV + N I ~ )  independent solutions of &e inhomgeneous 

I n  th i s  

and the N I X  
0 a . These solutions a r e  cornbilled with (as yet unknown) 

t o  give the  full solutiori'over i 
r 6 r Ne choose to use the Runge-Kutta mthcd t o  integrate from 

0 

Asymptotically, where r = r (&M) l inea r ly  independent solutionsof Eq. (9) B' 
are generated by setting tha coefficients of s i n  € I 8 ,  cos 8' and e'K I'each i n  

turn to Unity, and t l e  l l e m a i n i n g  coefficients t o  z e q  where e'= k r  - q log 2kr anil 

iK&. 

at r 3 

integrated i n  to some point r where the exponential terms i n  the various 

potentials might be expected t o  begin contributing. 

independent solution are generated by sett ing the coefficients of r-' i n  turn t o  

The asymptotic expansion of Burke and Schey is used to calculate the f'unction 

and (rB- H) where H is another, step2ing increment, These solutions are 

A' 

A t  rA a fur ther  NE l inearly 

unity and all pthers to zero. A fur ther  (NV+NMu) independent solutions of the 

inhomogeneous s y s t e m  are defined by setting C o r  p 

inner region. The totality of outer solutions, NOW = N'+M + NE + NV + M are 

eagal t o  unity as i n  the i 

integrated f rm r i n to  r and beyond to  som 

labelled pi '. A 0 

I n  order tha t  the solution be continuous 

i s  possible t o  impose continuity Or functions 

. I  These outer solutions are ro 

over the whole damin 

and derivatives at any point, e.g. 

0 + r < rBB' it 

at  r 

la t te r  c r i te r ion  was  used i n  the computer program, mi gives ~ ( I ~ N E )  equations 

o r  the Functions be continuous at a pair of points r and r' say. The 
0' 0 0 



f o r  the 2(M+NE) + NA + NV + h%XJ unknown parameters U,,W;~, C and p 

(NV + NhU) e q a t i o n s  are obtained by substituting the continuous solution given 

by Eq. (39) in to  (33) and also i n to  the equations obtained by equi r ing  (20) to be 

zero. 

A further 
Y' 

The  remaining NA equations are obtained by specifying tha t  the coefficients 

of the sine p a r t  of the P.H.S. of Eq. (39) i n  the asymptotic region equals 

kf' 6 far j = 1 t o  NA. That is 
1 

i j  

NA+i since the others do not contribute 
= wi 5: + %A+i si 

c 

= o. sin ei I + %A+i cos ei' 
1 

. where  8 ' = k.r - q. log 2k.r . From Eq. (2a) 1 1 i 1  

F. .(r) - ICi* [ ( s in  0; cos @i - cos 8; s i n  8,) bij 
1J 

.. .(&) 

+ .(cos 8' cos oi + s i n  e; s i n  9. 8 I 
1 i j  i 
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,, 

whe= $i = li 4 2 4  *Combining this re su l t  w i t h  (40) gives the required 

NA equations 
li 

1 

6i j 
cos (6, oi J - sin Q~ %A+i j = kiT 

where the superscript j denotes that the l i n e a r  equations at the matching point 

f o r  the parameters v., ... p must be solved NA times, with j characterizing these 

matched solutions. The elements of the real  symmetric reactance matrix are then 

given by 

. (42) j Rij = kiv [ sin $i wi + cos Qi %A + is 3. 
1 

Having obtained the &. matrix i t  is a simple matter of m a t r i x  manipulation 

to  obtain the T-matrix and cross section using equations (35) ard ($}* 
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